

FERRY: access control and quota management
service

Mine Altunay¹, Joseph Boyd¹, Bruno Coimbra¹, Kenneth Herner¹, Krysia Jacobs¹, Farrukh
Kahn¹, Tanya Levshina¹,*, Brian McKittrick¹, Rennie Scott¹, Timothy Skirvin¹, Felix Stores¹,
Jeny Teheran¹, Margaret Votava¹ and Tammy Whited¹
1Fermi National Accelerator Laboratory, Computing Sector, Batavia, IL, USA

Abstract. Fermilab developed the Frontier Experiments RegistRY
(FERRY) service that provides a centralized repository for the access
control and job management attributes such as batch and storage access
policies, quotas, batch priorities and NIS attributes for cluster configuration.
This paper describes FERRY architecture, deployment and integration with
services that consume the stored information. The Grid community has
developed several access control management services over the last decade.
Over time, support for Fermilab experiments has required the collection and
management of more access control and quota attributes. At the same time,
various services used for this purpose, namely VOMS-Admin, GUMS and
VULCAN, are being abandoned by the community. FERRY has multiple
goals: maintaining a central repository for currently scattered information
related to users' attributes, providing a Restful API that allows uniform data
retrieval by services, and providing a replacement service for all the
abandoned grid services. FERRY is integrated with the ServiceNow
(SNOW) ticketing service and uses it as its user interface. In addition to the
standard workflows for request approval and task creation, SNOW invokes
orchestration that automates access to FERRY API. Our expectation is that
FERRY will drastically improve user experience as well as decrease efforts
spent on support by service administrators.

1 Introduction
The Fermilab Computing Sector (SC) provides comprehensive data processing and
distributed computing framework for Fermilab’s scientific stakeholders. The Frontier
Experiments RegistRY (FERRY) service, developed by the SC, allows numerous services,
including NIS, EOS, HTCondor, dCache and others, to have access to a single source of
accurate information related to user identity mapping, authorization attributes and various
quotas. Although it is not a core objective of the project, a side benefit is eliminating several
obsolete services such as GUMS[1] and CMS LPC in-house developed service
VULCAN[2] that provides fine-grained user mapping to specific resources. It also allowed
us to retire the VOMS-ADMIN[3] tool that provides user interface to VOMS[4] service.

* Corresponding author: tlevshin@fnal.gov

The Fermilab Human Resource Database contains information on current and retired
employees, visitors and summer students. Only active Fermilab users in good standing have
a Fermilab Services account that provides access to Fermilab mail, SharePoint, and ticketing
services. Only a subset of these users are people who need to run jobs on the Grid and transfer
data to and from Fermilab storage services. This group of people is usually affiliated with
one or several Fermilab experiments and projects (see Figure 1). Access to interactive and
Grid clusters, to storage services and storage quotas, batch priority and slot allocation
depends on their affiliation to a particular experiment. Prior to development and deployment
of FERRY this information was been stored by various services and was often out of sync.
FERRY created a single source of truth for this data.

Fig. 1. Groups of users that have been registered at FERRY, from Fermilab HR database to VO
membership.

2 Requirements
Some of the essential FERRY service requirements, that came from the multiple
stakeholders and customers, are listed below. FERRY service should:

• Provide flexible APIs that allow consuming services to pull information about:
o VO role and grid map-files
o VO members, their certificates, assigned groups and roles
o LPC users, their CERN attributes, EOS quota and LPC group

affiliations
o Unix passwd and group files for a specified VO and/or compute

resource
• Be able to extend and modify data schema. The schema should support:

o users with multiple VO memberships and groups
o resource-oriented groups that control access to a resource (NIS passwd

and group files, storage access, … etc.)
• Be available on 5x8 basis. The dependent services should rely on cached

information.
• Provide appropriate level of security for data access. Though information that is

stored by FERRY doesn’t contain any sensitive information, it still gathers a lot
of information related to users in one central place.

• Integrate with ServiceNow (SNOW) [5] to handle customer requests. Failure to
propagate data from a customer request submitted via SNOW should be

periodically retried and a ticket to the Ferry support group should be opened
when retry limit is reached.

• Must allow for removing a user or removing user attributes and affiliations.

3 Architecture

FERRY service consists of the RESTFul Web Service and the FERRY database. FERRY
Web Interface is SNOW. The SNOW custom forms have been created to fill specific
requests. The SNOW service uses the “Orchestration”[6] technique to communicate with
FERRY. Service providers custom scripts are querying the FERRY service using more than
eighty APIs to get relevant information. Only small subset of clients are authorized to make
modification via FERRY APIs. Clients are using x509 certificate to authenticate with
FERRY Service.

Initial ingest of data was implemented by using several scripts that pull data from various
sources, correlate and validate them, and then populate the FERRY database. The
update_user script, run as a cron job, acquires information about newly joined or retired users
from Fermilab’s HR database and Active Directory Service and then updates FERRY. All
other modification requests come via SNOW. Fermilab services periodically query FERRY
to get necessary data. The FERRY architecture is shown in Figure 2.

Fig. 2. FERRY Architecture.

 4 Implementation
FERRY web service is implemented using GO language. Postgres was chosen for the
database implementation. All FERRY APIs return information in JSON format. The
databases tables are logically organized in groups:

• User related tables that contains user’s full name, unix id, unix name, and user’s
groups.

• Affiliation unit (Virtual Organization), Fully Qualified Attribute Name (FQAN),
members and certificates.

• Compute resource and access to it, that include user’s primary and secondary
groups, preferred shell and home directory.

• Storage resources, access to storage and quotas.

5 Integration with Services
The FERRY service substitutes existing authorization services, such as GUMS and
VULCAN. This data, obtained from FERRY, allows correctly authorize users and provides
valid mapping. FERRY enable us to get rid of stale and inaccurate data previously stored
locally by various services.

 Many grid services need a grid map-file that provides mapping of a distinguished name
from a presented certificate to a local Unix account. This Unix account would be used for
executing a job or accessing a file on a Unix node. Other services need a VO-role map-file
for mapping a Fully Qualified Attribute Name to a local Unix account. The services that are
in need of these files pull them from FERRY by using relevant FERRY APIs.

FERRY is keeping track of members affiliation with experiments. In the past, there were
“multiple sources of truth” for this sort of information; for example NIS tables for experiment
interactive clusters, HTCondor CE head and worker nodes all got information from different
sources. FERRY also serves as a source of truth for populating VOMS instances. FERRY
contains various other service configuration metadata which previously was stored only in
configuration files of individual services. Since this data is now in FERRY, it can easily be
modified by SNOW processes, initiated from user request forms, and the services can pull
the configuration from the FERRY database at predetermined intervals to configure the
underlying services. The information currently stored in FERRY includes HTCondor group
account quotas and EOS storage quotas.

5.1 FERRY and Grid services

Fermilab provides computing and storage resources to multiple experiments. These resources
are accessed through a gateway known as 'compute element' or CE. We use HTCondor-CE
[7] as our gatekeeper of choice. Part of the responsibility of a CE service is determining if an
experiment or a user is authorized to access the compute resources attached to it. HTCondor-
CE at Fermilab relies on VO role and grid map-files to make this decision. VO role map-file
contains VOMS attribute to Unix account mapping whereas grid mapfile contains X509
certificate distinguished name (DN) to Unix account mapping. FERRY, being the source of
truth for access control, provides this information to the CE through RESTful API calls. A
python script runs hourly on a caching server to fetch these map-files from FERRY and
places them onto a local webserver. The CE service then periodically pulls in these map-files
and uses them to make authorization decisions. We have ten CEs with different access
control requirements. FERRY provides the necessary flexibility to enforce these access
control policies per cluster.

5.2 FERRY and NIS

In order to tie FERRY to existing NIS services we use a caching server. This caching server
pulls data from FERRY on an hourly basis; validates the data; converts the data into

"standard" data formats; and places the output onto a local web server. Each client can then
query the data as necessary for its operations.

One example: user and group management replaces NIS with nss_db by using a JSON
formatting compatible with json-passwd[8]. Each individual client (worker node, interactive
machine, etc) independently pulls down group/passwd data for a specific resource from the
FERRY caching server on an hourly basis, and saves it locally in a format compatible with
the libnss_db Unix interface.
 The major benefits of this architecture are:

• Simplicity - everything works through simple web calls and basic bash scripting.
• Performance - easily scales to thousands of systems.
• Reliability - clients can continue to get data during FERRY system outages and off-

hours, and can use their existing cached data even with no further network access.

5.3 FERRY and VOMS

The synchronization script pulls relevant information from FERRY, such as groups and roles,
members and their certificates, as well as member groups and roles affiliation and inserts it
directly into VOMS database. The users with inactive (expired) Fermilab account are deleted
from VOMS service automatically.

6 Integration with SNOW
FERRY integration with SNOW improved user experience by allowing the creation
of comprehensive request forms with drop down menus with valid data choices that are
populated from FERRY. We have streamlined the request management that allows us to
demand approval/rejection from a specific group of managers before processing further
requests. The major breakthrough was achieved by implementing a push request to FERRY
by using the SNOW Orchestration mechanism that is shown in Figure 3.

Fig.3. Example of SNOW form workflow with orchestration.

 This workflow will allow the automation of user registration and attribute management.
For example, if a user submits a SNOW request to become a member of a particular
experiment, a SNOW form allows them to select an experiment and Grid role within the
experiment (e.g. Production), then based on a workflow gets an approval for a relevant
experiment’s coordinator and pushes this information to FERRY. Various services that create

passwd/group files on interactive and grid nodes, update VOMS and dCache information
will periodically pull this information from FERRY and change above mentioned files and
configuration.

7 Deployment
The database used by the FERRY service is deployed in the centrally managed postgres
database cluster maintained by the Core Computing Division at Fermilab. There are
production and development instances with nightly backups for disaster recovery. The
databases are deployed on a redundant cluster to ensure high availability.

The RESTful API for FERRY is implemented in the GO language. A GIT repo has
everything needed to deploy the GO based RESTful API. The steps involved are:

• Execute Git clone
• Populate a configuration file with user/password for the db
• Execute docker-compose up

These actions allow us to deploy FERRY service that is responding on a predetermined
port and talking to the configured database. The docker-compose config file specifies how
to build the GO code, copies in the config files it needs, runs the GO app, and also starts up
separate containers that monitor the database pushing stats to our Graphite service and
another container that is updating the FERRY database from central Fermilab databases.

8 Monitoring
We are monitoring both components of the FERRY system. The monitoring data is pushed
to Fermilab monitoring infrastructure, Landscape[9]. This data are available through the
Open Source visualization tools, like Grafana [10] and Kibana[11]. We are using a docker
image named wrouesnel/postgres_exporter[12], a PostgresSQL metric exporter for
Prometheus, to monitor database activity and report it to a Graphite/Grafana installation used
by a large number of other services and users at Fermilab. This is a generic tool which pushes
metrics from a Postgres installation and allows us plot many different metrics relating to
database activity so we can detect anomalies and understand usage. The database dashboard
is shown in Figure 4.

Fig.4. Monitoring database performance using Grafana/Graphite service.

To understand the usage patterns of the individual API calls we are sending FERRY
service logs to an ElasticSearch[11] cluster which is also used by many other services and
users at Fermilab. The logs of the application are split up into key value pairs which allow
us to make plots of anything from individual API invocation counts to plots showing the
client locations from where the API was accessed, as well as query content, duration and
status. An example of a plot that could be created based on log information is presented in
Figure 5.

Fig. 5. Weekly graph of FERRY activities by API requests using Kibana/ES.

9 Conclusion
The FERRY service provides a centralized repository for the access control and job
management attributes such as batch and storage access policies, quotas, batch priorities and

NIS attributes for cluster configuration. It maintains a central repository for previously
scattered, and sometime obsolete, information related to users' attributes. FERRY provides
RESTful APIs that allow uniform data retrieval by numerous services. It enables the use of
custom forms from ServiceNow and allows orchestration, so users can request
services/changes which will be quickly deployed to services in an automated fashion.

 With FERRY deployment we are able to retire unsupported services, such as GUMS
and Vulcan and change the service level support from 24x7 basis to 8x5 that reduces the total
cost of ownership for the organization.

Overall FERRY reduces operational load on support staff while improving end users
experience.

Acknowledgment
This manuscript has been authored by Fermi Research Alliance, LLC under Contract
No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science,
Office of High Energy Physics. This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States Government purposes.

References
1. GUMS Retirement: http://opensciencegrid.org/technology/policy/gums-retire
2. VULCAN: https://cmsweb.fnal.gov/bin/view/Software/Vulcanindex
3. VOMS-ADMIN Retirement: http://opensciencegrid.org/technology/policy/voms-

admin-retire/
4. VOMS: http://repository.egi.eu/2012/07/10/voms-2-0-8/
5. ServiceNow (SNOW): https://www.servicenow.com/
6. SNOW Orchestration: https://www.servicenow.com/products/orchestration.html
7. HTCondor Overview: http://opensciencegrid.org/docs/compute-element/htcondor-

ce-overview/
8. https://github.com/tskirvin/json-passwd
9. Landscape:

https://indico.cern.ch/event/721026/contributions/2964078/attachments/1629322/2
615771/Landscape_CERN_201804.pdf

10. Grafana/Graphite: http://docs.grafana.org/features/datasources/graphite/
11. ELK Stack: https://www.elastic.co/elk-stack
12. https://github.com/wrouesnel/postgres_exporter

